Probability and Statistical Engineering, ENEE2307

Quiz_solution\#1 Sec \#1 16 Oct 2017
The blood groups of 200 people is distributed as follows: 50 have type A blood, 65 have B blood type, 70 have O blood type and 15 have type AB blood. Where $30 \%, 40 \%, 60 \%$, and 40% of these groups has the blood group H antigen (+) respectively, if a person from this group is selected at random,
a- What is the probability that this person can give his blood to A+ (A-type with H antigen) blood type person?

$$
P=P(A \cup O)=P(A)+P(O)=\frac{50}{200}+\frac{70}{200}=\frac{3}{5}
$$

Hint: (A+) type can get blood from A type or O type regardless of the H antigen.
b- What is the probability that this person has H antigen (+ blood type)?

$$
\begin{aligned}
P(H)= & P(A) P(H / A)+P(B) P(H / B)+P(O) P(H / O)+P(A B) P(H / A B) \\
& =0.3 * \frac{50}{200}+0.4 * \frac{65}{200}+0.6 * \frac{70}{200}+0.4 * \frac{15}{200}=\frac{89}{200}
\end{aligned}
$$

c^{-}If this person has negative H antigen what is the probability that he have B blood type?

$$
P(B / \bar{H})=\frac{P(\bar{H} / B) P(B)}{P(\bar{H})}=\frac{0.6 * \frac{65}{200}}{\frac{111}{200}}=0.35
$$

Probability and Statistical Engineering, ENEE2307

Quiz_solution\#1

Sec \#4
17 Oct 2017
A building construction project, the completion of the building requires the successive completion of a series of activities. Define
$E=$ event that excavation is completed within its time schedule of 3 months;
$\mathrm{F}=$ event that the foundation is completed within its time schedule of 2 months $S=$ event that the superstructure is completed within its time schedule of 6 months.
The probability that the excavation is completed within its time schedule is 0.8 , or $\mathrm{P}(\mathrm{E})=0.8$. If the excavation is completed on schedule, then the probability that the foundation is completed within its time schedule is 0.9 , or $\mathrm{P}(\mathrm{F} \mid \mathrm{E})=0.9$. However, if the excavation is not completed on schedule, then the probability that the foundation is completed within its time schedule is smaller and equal to 0.6 , or $\mathrm{P}\left(\mathrm{F} \mid \mathrm{E}^{\prime}\right)=0.6$. Finally, the following probabilities correspond to the construction of the superstructure:
$\left.\mathrm{P}(\mathrm{S} \mid \mathrm{FE})=0.85, \mathrm{P}(\mathrm{S} \mid \mathrm{FE})^{\prime}\right)=0.7, \mathrm{P}=\left(\mathrm{S} \mid \mathrm{F}^{\prime} \mathrm{E}\right)=0.65$, and $\mathrm{P}\left(\mathrm{S} \mid \mathrm{F}^{\prime} \mathrm{E}^{\prime}\right)=0.5$
a- Are F and E statistically independent events.

$$
\begin{gathered}
0.9=P(F / E) \stackrel{?}{?} P(F) \\
0.6=P(F / \bar{E})=\frac{P(F \cap(1-E))}{P(\bar{E})}=\frac{P(F)-P(F \cap E)}{P(\bar{E})} ? \frac{P(F)-P(F) P(E)}{P(\bar{E})} \\
=\frac{P(F)(1-P(E))}{P(\bar{E})}=P(F) \\
0.9 \neq P(F) \neq 0.6
\end{gathered}
$$

So F and E are not statistically independent events
b- Calculate the probability for completing all the activities in their schedule.

$$
P(E \cap F \cap S)=P(E) P(F / E) P(S / F E)=0.8 * 0.9 * 0.85=0.612
$$

c- Calculate the probability for completing the activities E and F in their schedule but not S .

$$
\begin{gathered}
P(E \cap F \cap \bar{S})=P(E \cap F \cap(1-S))=P(E \cap F)-P(E \cap F \cap S) \\
=P(E) P(F / E)-P(E) P(F / E) P(S / F E) \\
P(E \cap F \cap \bar{S})=0.8 * 0.9 *(1-0.85)=0.108
\end{gathered}
$$

